Single molecule detection from a large-scale SERS-active Au79Ag21 substrate
نویسندگان
چکیده
Detecting and identifying single molecules are the ultimate goal of analytic sensitivity. Single molecule detection by surface-enhanced Raman scattering (SM-SERS) depends predominantly on SERS-active metal substrates that are usually colloidal silver fractal clusters. However, the high chemical reactivity of silver and the low reproducibility of its complicated synthesis with fractal clusters have been serious obstacles to practical applications of SERS, particularly for probing single biomolecules in extensive physiological environments. Here we report a large-scale, free standing and chemically stable SERS substrate for both resonant and nonresonant single molecule detection. Our robust substrate is made from wrinkled nanoporous Au₇₉Ag₂₁ films that contain a high number of electromagnetic "hot spots" with a local SERS enhancement larger than 10⁹. This biocompatible gold-based SERS substrate with superior reproducibility, excellent chemical stability and facile synthesis promises to be an ideal candidate for a wide range of applications in life science and environment protection.
منابع مشابه
Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection.
We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with p...
متن کاملSurface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure.
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this ...
متن کاملLarge-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl.
Large scale and well-ordered gold nanoparticle superlattices were fabricated by self-assembly as an active substrate for surface-enhanced Raman scattering (SERS) that can quantitatively detect carbaryl with a detection limit of 1 ppm. These fabricated superlattices with a dimension of several hundred micrometers exhibited high, reproducible SERS activity.
متن کاملSingle-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity.
In this study, an eco-friendly and ultrasensitive paper substrate is developed for surface-enhanced Raman scattering (SERS) with performance approaching single molecule detection. By exploiting the laser-induced photothermal effect, paper fibrils with hybrid micro- and nanostructures can facilitate the formation of highly dense metal nanoparticles (NPs) after a single shot of laser illumination...
متن کاملSERS: Materials, applications, and the future
The first observations of the Raman spectra of pyridine on roughened silver were made in 19741; however, at this time the authors did not recognize that these spectra were due to any unusual, enhanced, or new phenomena. Since its discovery in 19772, interest in and the use of surface enhanced Raman spectroscopy (SERS) has grown exponentially (Fig. 1). The SERS field has dramatically progressed ...
متن کامل